ASTR 503: ASTRONOMY FOR TEACHERS

DESCRIPTION

Overview of stars, galaxies, and the Universe at a non-calculus level. Includes basics about the Sun. Learn how to teach astronomy concepts as specified by the state of Texas. Methods to help students master content, including lab activities suitable for K-12 classrooms and as field trips. Observing sessions at Rice campus observatory and George Observatory TBD. This course is designed for inservice and preservice science and math teachers (grades 6-12), but open to undergraduates considering a teaching profession.

OVERVIEW

This course is designed for inservice and preservice teachers who wish to improve their content skills in Astronomy. This course develops astronomy concepts in a manner consistent with National Science Standards, Texas Essential Knowledge and Skills proficiencies and HISD's Project Clear, and the new Texas High School Graduation requirements. The course (coupled with its partner course ASTR 502) will cover all topics in the Texas High School Astronomy requirements, but will be taught at a level accessible for teachers in middle and upper elementary schools. It will also cover all relevant astronomy topics in the new TX High School "Earth and Space Science" course.

The course also focuses on how students develop astronomy concepts and misconceptions and provides popular hands-on activities that can be used in the upper elementary and middle school grades (5-9) and also extended for high school Astronomy and Earth and Space Science. Participants use specially-developed software as part of the course and can involve their own students in many of the out-of-class activities. Main topics include the properties of light, celestial coordinates and the changes in the sky over a night and over a year; formation of stars, galaxies, and the universe; life and death of low and high-mass stars; extrasolar planets and astrobiology. The class is designed for inservice or preservice teachers. (Undergraduates considering teaching careers may take the class as part of their normal education program.)

Skills Taught: Hands-on model making, direct observation of astronomical events, simulations, conducting experiments, reading and comparative analysis - all appropriate for replication in upper elementary and middle school classrooms. Use of observation, comparison, application, analysis, and synthesis. Mathematics at the level of algebra, logarithms, exponentials, trigonometry and sine waves. Training in "Space Update" DVD and "Stellarium" and experience in doing image processing and research on the Internet. Use of Powerpoint to create presentations. Observations at the Rice Observatory and one field trip TBD to the George Observatory.

Alignment with Texas Standards and High School Course requirements

SCIENCE TEKS

Grade Levels: 3-5 and 6-8

Strands: Properties and Patterns; Tools and Equipment; Natural World; Systems; Matter and Energy Interactions; Scientific Processes; Inquiry; Critical Thinking

MATH TEKS

Grade Levels: 3-5 and 6-8

Strands: Numbers, Operations, and Quantitative Reasoning; Measurement; Probability and Statistics

HIGH SCHOOL ASTRONOMY (TEXAS COURSE 112.48)

Knowledge and Skills: Scientific Processes, scientific methods, use of data to make inferences

Science Concepts: Characteristics of Galaxies, Age of the Universe, Big Bang Theory, Formation of galaxies and the solar system, Life cycles of stars, Nuclear reactions in stars, H-R Diagram, Units of
measurement such as Light Year and Astronomical Unit; History of astronomy; Equation of gravitation, The Sun as a star, its energy sources (the remaining solar system concepts are covered in ASTR 502)

CLASS DETAILS

Meeting times: Monday evenings, 6 - 9 pm (plus a few Thursdays and two Saturdays)
August 25 through December 5, 2014

Meeting location: HBH 223, with some sessions in the campus planetarium BRK250, plus labs at the Campus Observatory and George Observatory

Instructors:
Prof. Patricia Reiff (reiff@rice.edu); Phone 713-348-4634; Office HBH 226; Office Hours by Appointment
Adjunct Prof. Carolyn Sumners (csumners@hmns.org)

Textbooks:
"Space Update", SpaceUpdate.com, ISBN 9781931-523530; Bring laptop to class

Syllabus, Homework, and Grading:
Grading: approximately 40% for two in-class quizzes; 50% for homework; 10% for observing project; no final exam. One of the homeworks will involve researching a spacecraft or ground-based Astronomy mission and making a Presentation to the class. Schedule | Homework

University Credit Hours: 3 (sorry, no stipend)
To register for credit, contact Patricia Reiff (reiff@rice.edu) at 713-348-4634.
Undergraduate students considering a teaching career are also encouraged to enroll in this class for credit, but it may not count as an upper-division elective for a BS in Astrophysics.

Tuition/fees:
Courtesy of major discounts from Rice University, the tuition is only $1200 for three hours of graduate credit for inservice teachers, plus fees. Certain inservice teachers may qualify for special tuition scholarships - come to class the first evening.

Absence Policy:
The lectures will be recorded for later playback through owlspace. Because of the intense hands-on nature of some of the sessions, and the fact that we will observe through the campus telescope if weather permits, students should try to attend every class but no specific penalty for absences.

Honor Code:
Students may work together on homework but each student shall turn in their own paper.
Quizzes must be pledged as individual work and are subject to the Rice Honor Code.

Students With Disabilities:
Any student with a disability that requires accommodation should contact the instructor and the Disability Support Services. We will attempt every reasonable accommodation.

SCHEDULE : FALL 2014 (TENTATIVE)

<table>
<thead>
<tr>
<th>DATE</th>
<th>MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon Aug 25</td>
<td>Class overview; filling out of forms and pretest; installation of Space Update DVD; Overview of the Universe; Overview of the Galaxy (BRING A LAPTOP)</td>
</tr>
<tr>
<td>Mon Sept 1</td>
<td>Introduction to Celestial coordinates; Motion of the Sky through the night; Changes during the year; changes from changes in latitude or location</td>
</tr>
<tr>
<td>Mon Sept 8</td>
<td>The sky in the planetarium dome: Celestial coordinates, motion of the sky at night</td>
</tr>
<tr>
<td>Mon Sept 15</td>
<td>Properties of Light; spectroscopy; doppler shift; Universe in various wavelengths; introduction to parallax</td>
</tr>
<tr>
<td>Mon Sept 22</td>
<td>Calculations of distances using parallax and standard candles. Small-angle trigonometry. Activity: size and distance of the Moon</td>
</tr>
<tr>
<td>Mon Sept 29</td>
<td>More on celestial coordinates; Galactic coordinates and galactic rotation</td>
</tr>
</tbody>
</table>
Mon Oct 6
HBH 223 (6-9 pm) | Cosmology and the Expansion of the Universe; "Missing Mass"

SATURDAY TBD (if clear)
starting 8 pm (Backup Date TBD) | OVERNIGHT at George Observatory, Brazos Bend State Park (bring sleeping bags and floor pads)

Mon Oct 13
HBH 223 (6-9 pm)
(We will have class this day and will take our fall break on Oct 20) | Review; quiz 1; Plan for Sally Ride Fest

Sat Oct 25
Rice Engineering Quad, 10 am - 4 pm | Sally Ride Science Festival (help with event)

Mon Oct 27
Birth and Life of Stars; H-R Diagram

Mon Nov 3
More on Stars: Fusion, Corona, Solar flares

Mon Nov 10
Death of Stars: red giants, planetary nebulae, white dwarfs

Mon Nov 17
Search for Extrasolar planetary systems

Mon Nov 24
Supernovas, neutron stars, Black Holes, wormholes and other exotic topics

Mon Dec 1
Class presentations, review for Quiz (takehome quiz; take from Dec 10-17)

HOMEWORK

- **Homework 1** (in class Sept 10) : Do the "properties of light" activity from Space Update. (Special diffraction glasses in the case) Due to turn in: Sept 17
- **Homework 2**: Doppler shift activity due Sept 24
- **Homework 3**: Distances and magnitudes activity - distances to stars, etc. Due Oct 1
- **Homework 4**: Stellarium activity. Due Oct 8
- **Homework 5**: Sun and Stars homework due Nov 5
- **Homework 6**: Observing Project. Due Nov 19
- **Homework 7**: Public Education Project. Writeup due Nov 19
- **Homework 8**: Astronomy Mission Report (counts as 12 points, including presentation). Electronic version of powerpoint file must be turned in, including movies if used. Must include at least 6 references, of which at least one must be a print, refereed, scientific journal (not just a web reference). Presentations 11/19 and 11/26. [Previous presentations]

- [Quiz 1 review sheet](#)
- [Quiz 2 review sheet](#)

OBSERVING PROJECT

Due: April 18, in class

- Observe at least 6 objects not in the solar system. Draw a sketch using the JPG or PDF observing form (Save it and print it from a print program, or print at 50% from your browser), being sure to note the location, telescope used, etc. Use a different page for each session. One of your objects can be the Sun (use safe techniques!)
- Be able to point out six stars and four constellations in the sky to the labbie! Have them sign your form that you pointed them out. (can be some of the same objects you observe).

Limiting magnitude: The "limiting magnitude" is the magnitude of the dimmest star you can see with your naked eye.

Field of View: Given the Moon's size in your field of view, you can estimate the field of view of the eyepiece by seeing how many Moons fit across the field of view.

Magnification: Equals the focal length of the objective divided by the focal length of the eyepiece. The Focal Length of the observatory 16 inch telescope is 4 m; of the 11-inch Celestron is 2m; of the 8 inch, 1 m.

There will be at least four evening sessions, but we get clouded out a lot, so be sure to come to the first possible session you can! Or, you can go the "George Observatory" (in Brazos Bend State Park) any clear Saturday evening. (We may do a campout, date TBD)